首页> 外文OA文献 >Daisy cubes and distance cube polynomial : Dedicated to the memory of our friend Michel Deza
【2h】

Daisy cubes and distance cube polynomial : Dedicated to the memory of our friend Michel Deza

机译:雏菊立方体和距离立方体多项式:献给我们的朋友Michel Deza的记忆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let X ⊆ {0, 1} n. Then the daisy cube Q n (X) is introduced as the sub-graph of Q n induced by the intersection of the intervals I(x, 0 n) over all x ∈ X. Daisy cubes are partial cubes that include Fibonacci cubes, Lucas cubes, and bipartite wheels. If u is a vertex of a graph G, then the distance cube polynomial D G,u (x, y) is introduced as the bivariate polynomial that counts the number of induced subgraphs isomorphic to Q k at a given distance from the vertex u. It is proved that if G is a daisy cube, then D G,0 n (x, y) = C G (x + y − 1), where C G (x) is the previously investigated cube polynomial of G. It is also proved that if G is a daisy cube, then D G,u (x, −x) = 1 holds for every vertex u in G.
机译:令X⊆{0,1} n。然后,将雏菊多维数据集Q n(X)作为Q n的子图引入,该子图由所有x∈X上的区间I(x,0 n)的交集引起。雏菊多维数据集是包括Fibonacci多维数据集,Lucas的部分多维数据集。立方体和两方轮。如果u是图G的顶点,则将距离立方多项式D G,u(x,y)作为双变量多项式引入,该多项式计算从顶点u到给定距离处同构到Q k的诱导子图的数量。证明如果G是一个雏菊立方体,则DG,0 n(x,y)= CG(x + y-1),其中CG(x)是先前研究的G的三次多项式。如果G是一个雏菊立方体,则DG,u(x,-x)= 1对于G中的每个顶点u成立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号